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ABSTRACT 
The Rete Match Algorithm is an efficient method for comparing a large collection of patterns to a large 
collection of objects. It finds all the objects that match each pattern. The algorithm was developed for use in 
production system interpreters, and it has been used for systems containing from a few hundred to more 
than a thousand patterns and objects. This article presents the algorithm in detail. It explains the basic 
concepts of the algorithm, it describes pattern and object representations that are appropriate for the 
algorithm, and it describes the operations performed by the pattern matcher. 

1. Introduction 

In many pattern/many object pattern matching, a collection of patterns is 
compared to a collection of objects, and all the matches are determined. That 
is, the pattern matcher finds every object that matches each pattern. This kind 
of pattern matching is used extensively in Artificial Intelligence programs 
today. For instance, it is a basic component of production system interpreters. 
The interpreters use it to determine ~vhich productions have satisfied condition 
parts. Unfortunately, it can be slow when large numbers of patterns or objects 
are involved. Some systems have been observed to spend more than nine- 
tenths of their total run time performing this kind of pattern matching [5]. This 
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article describes an algorithm that was designed to make many pattern/many 
object pattern matching less expensive. The algorithm was developed for use in 
production system interpreters, but since it should be useful for other lan- 
guages and systems as well, it is presented in detail. 

This article attends to two complementary aspects of efficiency: (1) designing 
an algorithm for the task and (2) implementing the algorithm on the computer. 
The rest of Section 1 provides some background information. Section 2 
presents the basic concepts of the algorithm. Section 3 explains how the objects 
and patterns should be represented to allow the most efficient implementations. 
Section 4 describes in detail a very fast implementation of the algorithm. 
Finally, Section 5 presents some of the results of the analyses of the algorithm. 

1.1. oPs5 

The methods described in this article were developed for production system 
interpreters, and they will be illustrated with examples drawn from production 
systems. This section provides a brief introduction to the language used in the 
examples, oPs5. For a more complete description of oPS5, see [6]. 

A production system program consists of an unordered collection of If-Then 
statements called productions. The data operated on by the productions is held 
in a global data base called working memory. By convention, the If part of a 
production is called its LHS (left-hand side), and its Then part is called its RHS 
(right-hand side). The interpreter executes a production system by performing 
the following operations. 

(1) Match. Evaluate the LHSs of the productions to determine which are 
satisfied given the current contents of working memory. 

(2) Conflict resolution. Select one production with a satisfied LHS; if no 
productions have satisfied LHSs, halt the interpreter. 

(3) Act. Perform the actions in the RHS of the selected production. 
(4) Goto 1. 

oPss working memories typically contain several hundred objects, and each 
object typically has between ten and one hundred associated attribute-value 
pairs. An object together with its attribute-value pairs is called a working 
memory element. The following is a typical, though very small, oPs5 working 
memory element; it indicates that the object of class Expression which is 
named Exprl7 has 2 as its first argument, '*' as its operator, and X as its second 
argument. 

(Expression 1' Name Exprl7 1' Argl  2 1' Op * ~' Arg2 X) 

The 1' is the oPs5 operator that distinguishes attributes from values. 
The LHS of a production consists of a sequence of patterns; that is, a 

sequence of partial descriptions of working memory elements. When a pattern 
P describes an element E, P is said to match E. In some productions, some of 
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the patterns are preceded by the negation symbol, -. An LHS is satisfied when 
(1) Every pattern that is not preceded by-matches  a working memory 

element, and 
(2) No pattern that is preceded by-matches  a working memory element. 
The simplest patterns contain only constant symbols and numbers. A pattern 

containing only constants matches a working memory element if every constant 
in the pattern occurs in the corresponding position in the working memory 
element. (Since patterns are partial descriptions, it is not necessary for every 
constant in the working memory element to occur in the pattern.) Thus the 
pattern 

(Expression 1' Op * 1' Arg2 0) 

would match the element 

(Expression 1' Name Expr86 1' Argl X 1' Op * 1̀  Arg2 0) 

Many non-constant symbols are available in oPS5 for definfng patterns, but the 
two most important are variables and predicates. A variable is a symbol that 
begins with the character '(' and ends with the character ') '--for example (X). A 
variable in a pattern will match any value in a working memory element, but if a 
variable occurs more than once in a production's LHS, all occurrences must match 
the same value. Thus the pattern 

(Expression T Argl (VAL) T Arg2 (VAL)) 

would match either of the following 

(Expression 1' Name Expr9 1`Argl Expr23 1'Op * TArg2 
Expr23) 

(Expression 1̀  Name Expr5 1`Argl 0 1 `Op-  l 'Arg2 0) 

but it would not match 

(Expression 1' Name Expr8 1' Argl 0 1' Op * 1' Arg2 Expr23) 

The predicates in oPs5 include = (equal), < >  (not equal), < (less than), > 
(greater than), < =  (less than or equal), and > =  (greater than or equal). A 
predicate is placed between an attribute and a value to indicate that the value 
matched must be related in that way to the value in the pattern. For instance, 

(Expression 1' Op <>*)  

will match any expression whose operand is not *. Predicates can be used with 
variables as well as with constant values. For example, the following pattern 

(Expression 1' Argl (LEFT) 1' Arg2 < >  (LEFT)) 

will match any expression in which the first argument differs from the second 
argument. 



20 C.L. FORGY 

The RHS of a production consists of an unconditional sequence of actions. 
The only actions that need to be described here are the ones that change 
working memory. MAKE builds a new element and adds it to working 
memory. The argument to M A K E  is a pattern like the patterns in LHSs. For 
example, 

(MAKE Expression ~' Name Exprl  T Argl  1) 

will build an expression whose name is Exprl ,  whose first argument is I, and 
whose other attributes all have the value NIL (the default value in oess). 
MODIFY changes one or more values of an existing element. This action takes 
as arguments a pattern designator and a list of attribute-value pairs. The 
following action, for example 

(MODIFY 2 ~' Op NIL T Arg2 NIL) 

would take the expression matching the second pattern and change its operator  
and second argument to NIL. The action R E M O V E  deletes elements from 
working memory. It takes pattern designators as arguments. For example 

( R E M O V E  1 2 3) 

would delete the elements matching the first three patterns in a production. 
An or's5 production consists of (1) the symbol P, (2) the name of the 

production, (3) the LHS, (4) the symbol - - > ,  and (5) the RHS, with everything 
enclosed in parentheses. The following is a typical production. 

(P Time 0x 
(Goal 1' Type Simplify 1' Object (X)) 
(Expression I' Name (X) 1' Argl 0 1' Op *) 

(MODIFY 2 I 'OP NIL ~'Arg2 NIL)) 

1.2. Work on production system efficiency 

Since execution speed has always been a major issue for production systems, 
several researchers have worked on the problem of efficiency. The most 
common approach has been to combine a process called indexing with direct 
interpretation of the LHSs. In the simplest form of indexing, the interpreter 
begins the match process by extracting one or more features from each working 
memory element, and uses those features to hash into the collection of 
productions. This produces a set of productions that might have satisfied LHSs. 
The interpreter examines each LHS in this set individually to determine 
whether it is in fact satisfied. A more efficient form of indexing adds memory to 
the process. A typical scheme involves storing a count with each pattern. The 
counts are all zero when execution of the system begins. When an element 
enters working memory, the indexing function is executed with the new 
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element as its only input, and all the patterns that are reached have their 
counts increased by one. When an element leaves working memory, the index 
is again executed, and the patterns that are reached have their counts 
decreased by one. The interpreter performs the direct interpretation step only 
on those LHSs that have non-zero counts for all their patterns. Interpreters 
using this scheme--in some cases combined with other efficiency measures-- 
have been described by McCracken [8], McDermott, Newell, and Moore [9], 
and Rychener [10]. 

The algorithm that will be presented here, the Rete Match Algorithm, can be 
described as an indexing scheme that does not require the interpretive step. 
The indexing function is represented as a network of simple feature recog- 
nizers. This representation is related to the graph representations for so-called 
structured patterns. (See for example [2] and [7]). The Rete algorithm was first 
described in 1974 [3]. A 1977 paper [4] described some rather complex 
interpreters for the networks of feature recognizers, including parallel inter- 
preters and interpreters which delayed evaluation of patterns as long as 
possible. (Delaying evaluation is useful because it makes it less likely that 
patterns will be evaluated unnecessarily.) A 1979 paper [5] discussed simple but 
very fast interpreters for the networks. This article is based in large part on the 
1979 paper. 

2. The Rete Match Algorithm---Basic Concepts 

In a production system interpreter, the output of the match process and the 
input to conflict resolution is a set called the conflict set. The conflict set is a 
collection of ordered pairs of the form 

(Production, List of elements matched by its LHS) 

The ordered pairs are called instantiations. The Rete Match Algorithm is an 
algorithm for computing the conflict set. That is, it is an algorithm to compare a 
set of LHSs to a set of elements fn order to discover all the instantiations. The 
algorithm can efficiently process large sets because it does not iterate over the 
sets. 

2.1. How to avoid iterating over working memory 

A pattern matcher can avoid iterating over the elements in working memory by 
storing information between cycles. The step that can require iteration is 
determining whether a given pattern matches any of the working memory 
elements. The simplest interpreters determine this by comparing the pattern to 
the elements one by one. The iteration can be avoided by storing, with each 
pattern, a list of the elements that it matches. The lists are updated when 
working memory changes. When an element enters working memory, the 
interpreter finds all the patterns that match it and adds it to their lists. When an 
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element leaves working memory, the interpreter again finds all the patterns 
that match it and deletes it from their lists. 

Since pattern matchers using the Rete algorithm save this kind of in- 
formation, they never have to examine working memory. The pattern matcher 
can be viewed as a black box with one input and one output. 

(Changes to Working Memory) 

1 
Black Box 

1 
(Changes to the Conflict Set) 

The box receives information about the changes that are made to working 
memory, and it determines the changes that must be made in the conflict set to 
keep it consistent. For example, the black box might be told that the element 

(Goal T Type Simplify 1' Object Exprl9) 

has been added to working memory, and it might respond that production 
TimexN has just become instantiated. 

2.1.1. Tokens 

The descriptions of working memory changes that are passed into the black 
box are called tokens. A token is an ordered pair of a tag and a list of data 
elements. In the simplest implementations of the Rete Match Algorithm, only 
two tags are needed, + and - .  The tag + indicates that something has been 
added to working memory. The tag - indicates that something has been 
deleted from working memory. When an element is modified, two tokens are 
sent to the black box; one token indicates that the old form of the element has 
been deleted from working memory, and the other that the new form of the 
element has been added. For example, if 

(Expression 1' Name Expr41 1' Argl Y 

was changed to 

(Expression 1' Name Expr41 I' Argl 2 

the following two tokens would be processed. 

(-(Expression 
(+(Expression 

1' Op + 1' Arg2 Y) 

TOp * I' Arg2 Y) 

1' Name Expr41 T Argl Y 1" Op + 1' Arg2 Y)> 
TNameExpr41 l ' A r g l 2  I 'Op* l'Arg2Y)> 

2.2. How to avoid iterating over production memory 

The Rete algorithm avoids iterating over the set of productions by using a 
tree-structured sorting network or index for the productions. The network, 
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which is compiled from the patterns, is the principal component of the black 
box. The following sections explain how patterns are compiled into networks 
and how the networks perform the functions of the black box. 

2.2.1. Compiling the patterns 

When a pattern matcher processes a working memory element, it tests many 
features of the element. The features can be divided into two classes. The first 
class, which could be called the intra-element features, are the ones that 
involve only one working memory element. For an example of these features, 
consider the following pattern. 

(Expression 1' Name (N) l 'Argl  0 l 'Op + l'Arg2 (X)) 

When the pattern matcher processes this pattern, it tries to find working 
memory elements having the following intra-element features. 
-The class of the element must be Expression. 
-The value of the Argl attribute must be the number 0. 
- The value of the Op attribute must be the atom +. 

The other class of features, the inter-element features, results from having a 
variable occur in more than one pattern. Consider Plus0x's LHS. 

(P Plus0x 
(Goal 1' Type Simplify 1' Object (N)) 
(Expression 1' Name (N) l 'Argl  0 l 'Op + 

_ - ~  . . .) 
1' Arg2 (X)) 

The intra-element features for the second pattern are listed above. A similar 
list can be constructed for the first pattern. But in addition to those two lists, 
the following inter-element feature is necessary because the variable (N) occurs 
twice. 
-The value of the Object attribute of the goal must be equal to the value of 

the Name attribute of the expression. 
The pattern compiler builds a network by linking together nodes which test 

elements for these features. When the compiler processes an LHS, it begins 
with the intra-element features. It d~termines the intra-element features that 
each pattern requires and builds a linear sequence of nodes for the pattern. 
Each node tests for the presence of one feature. After the compiler finishes 
with the intra-element features, it builds nodes to test for the inter-element 
features. Each of the nodes has two inputs so that it can join two paths in the 
network into one. The first of the two-input nodes joins the linear sequences 
for the first two patterns, the second two-input nodes joins the output of the 
first with the sequence for the third pattern, and so on. The two-input nodes 
test every inter-element feature that applies to the elements they process. 
Finally, after the two-input nodes, the compiler builds a special terminal node 
to represent the production. This node is attached to the last of the two-input 
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nodes. Fig. 1 shows the network for Plus0x and the similar production Time0x. 
Note that when two LHSs require identical nodes, the compiler shares parts of 
the network rather than building duplicate nodes. 

2.2.2. Processing in the network 

The root node of the network (at the top in Fig. 1) is the input to the black box. 
This node receives the tokens that are sent to the black box and passes copies 
of the tokens to all its successors. The successors of the top node, the nodes to 
perform the intra-element tests, have one input and one or more outputs. Each 
node tests one feature and sends the tokens that pass the test to its successors. 
The two-input nodes compare tokens from different paths and join them into 
bigger tokens if they satisfy the inter-element constraints of the LHS. Because 
of the tests performed by the other nodes, a terminal node will receive only 
tokens that instantiate the LHS. The terminal node sends out of the black box 
the information that the conflict set must be changed. 

For an example of the operation of the nodes, consider what happens in the 
network in Fig. 1 when the following two elements are put into an empty 
working memory. 

(Goal 1' Type Simplify 1' Object Exprl7) 
(Expression 1' Name Expr17 1' Argl 0 1' Op * 1' Arg2 X) 

First the token 

(+(Goal 1' Type Simplify 1' Object Exprl7)) 

is created and sent to the root of the network. This node sends the token to its 
successors. One of the successors (on the right in Fig. 1) tests it and rejects it 
because its class is not Expression. This node does not pass the token to its 
successor. The other successor of the top node accepts the token (because its 
class is Goal) and so sends it to its successor. That node also accepts the token 
(since its type is Simplify), and it sends the token to its successors, the 
two-input nodes. Since no other tokens have arrived at the two-input nodes, 
they can perform no tests; they must just store the token and wait. 

When the token 

(+(Expression 1' Name Exprl7 1' Argl 0 1̀  Op * 1' Arg2 X)) 

is processed, it is tested by the one-input nodes and passed down to the right 
input of Time0x's two-input node. This node compares the new token to the 
earlier one, and finding that they allow the variable to be bound consistently, it 
creates and sends out the token 

(+(Goal 1' Type Simplify 1' Object Expr17) 
(Expression 1' Name Expr17 1' Argl 0 1' Op * 1' Arg2 X)) 
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(P Plus0x 
(Goal 1" Type Simplify 
(Expression T Name (N) 

_ _ >  . . . )  

(P Time0x 
(Goal 1" Type Simplify 
(Expression 1" Name (N) 

_ _ : >  . . . )  

1" Object (N)) 
1"Argl 0 1"Op+ 

1" Object (N)) 
1"Argl0 1"Op* 

1" Arg2 (X)) 

1" Arg2 (X)) 

Distribute the tokens. 
j l  

Is the element class Goal? 

Is the value of the 
Type Simplify? ~ 

Is the value of the 
Op+? [ 

Join the elements in which 
the value of the Object 
attribute from the left 
is equal to 
the value of the Name 
attribute from the right. 

Report that production 
Plus0x is satisfied. 

Is the element class Expression? 

Is the value of the Argl 0? 

Is the value of the 

l 
Join the elements in which 
the value of the Object 
attribute from the left 
is equal to 
the value of the Name 
attribute from the right. 

Report that production 
Time0x is satisfied. 

FIG. 1. The network for Plus0x and Time0x. 

When its successor, the terminal node for Time0x, receives this token, it adds 
the instantiation of Time0x to the conflict set. 

2.2.3. Saving information in the network 

As explained above, the black box must maintain state information because it 
must know what is in working memory. In simple Rete networks all such state 
is stored by the two-input nodes. Each two-input node contains two lists called 
its left and right memories. The left memory holds copies of the tokens that 
arrived at its left input, and the right memory holds copies of the tokens that 
arrived at its right input. The tokens are stored as long as they are useful. The 
next section explains how the nodes determine when the tokens are no longer 
useful. 
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2.2.4. Using the tags 

The tag in a token indicates how the state information is to be changed when 
the token is processed. The + and - tokens are processed identically except: 
- The terminal nodes use the tags to determine whether  to add an instantiation to 

the conflict set or to remove an existing instantiation. When a + token is 
processed, an instantiation is added; when a - token is processed, an 
instantiation is removed.  

- T h e  two-input nodes use the tags to determine how to modify their internal 
memories.  When a + token is processed, it is stored in the internal memory;  
when a - token is processed, a token with an identical data part is deleted. 

- T h e  two-input nodes use the tags to determine the appropriate  tags for the 
tokens they build. When a new output is created, it is given the tag of the token 
that just arrived at the two-input node. 

2.3. Completing the set of node types 

The network in Fig. 1 contained four kinds of nodes: the root node, the 
terminal nodes, the one-input nodes, and the two-input nodes. Certainly one 
could define many more kinds of nodes, but only a few more are necessary to 
have a complete  and useful set. In fact, only two more kinds of nodes are 
necessary to interpret oPs5. 

A second kind of two-input node is needed for negated patterns (that is, 
pat terns preceded by - ) .  The new two-input node stores a count with each 
token in its left memory.  The count indicates the number  of tokens in the right 
memory  that allow consistent variable bindings. The tokens in its right memory  
contain the elements  that match the negated pattern---or,  more precisely, the 
tokens contain the elements that have the intra-element features that the 
negated pattern requires. The node allows the tokens with a count of zero to 
pass. 

The last node type that needs to be defined is a variant of the one-input 
nodes described earlier. Those nodes tested Working memory  elements for 
constant features (testing, for example,  whether  a value was equal to a given 
atomic symbol). The new one-input nodes compare  two values from a working 
memory  element. These nodes are used to process patterns that contain two or 
more  occurrences of a variable. The following, for example,  would require one 
of these nodes because (X) occurs twice. 

(Expression 1' Arg l  (X) 1' Op + 1' Arg2 (X)) 

3. Representing the Network and the Tokens 

This section describes representat ions for tokens and nodes,,that allow very fast 
interpreters to be written. 
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3.1. Working memory elements 

The  representation chosen for the working memory elements should have two 
properties. 
- The representation should make it easy to extract values from elements because 

every test involves extracting one or more values. 
- The representation should make it easy to perform the tests once the values are 

available. 
To make extracting the values easy, each element should be stored in a 

contiguous block in memory, and each attribute should have a designated index 
in the block. For  example, if elements of class Ck had seventeen attributes, A1 
through A17, they should be stored as blocks of eighteen values. The first value 
would be the class name (Ck). The second value would be the value of attribute 
A1. The third would be the value of attribute A2, and so on. The particular 
assignment of indices to attributes is unimportant;  it is important only that each 
attribute have a fixed index, and that the indices be assigned at compile time. 
This allows the compiler to build the indices into the nodes. Thus instead of a 
node like the following: 

Is the value of the Status attribute Pending? 

the compiler could build the node 

Is the value at location 8 Pending? 

With this representation, each value can be accessed in one memory reference, 
regardless of the number of attributes possessed by an element. 

To make the tests inexpensive, the representation should have explicit type 
bits. One obvious way to represent a value is to use one word for the type and 
one or more words for the value proper. But more space-efficient represen- 
tations are also possible. For example, consider a production system language 
that supports three data types, integers, floating point numbers, and atoms. A 
representation like the following might be used: One word would be allocated 
to each value. For  integers and atoms, the low order sixteen (say) bits would 
hold the datum and the seventeenth bit would be a type bit. For floating point 
numbers, the entire word would be used to store a normalized floating point 
number. A floating point number would be recognized by having at least one 
non-zero in the high order bits. 

3.2. The network 

This section explains how to represent nodes in a form similar to von Neumann 
machine instructions. This representation was chosen because it allows the 
network interpreter to be organized like the interpreters for conventional von 
Neumann architectures. 
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3.2.1• An assembly language notation 

To make it easier to discuss the representation for the nodes, an assembly 
language notation is used below• A one-input node like 

Is the value of locating 8 Pending? 

becomes 

T E Q A  8, Pending 

The T, which stands for test, indicates that this is a one-input node• The E Q  
indicates that it is a test for equality• (It is also necessary to have NE for not 
equals, LT for less than, etc.). The  A indicates the node tests data of type 
atom. (There is also a type N for integer values, a type F for floating point, and 
a type S for comparing two values in the same working memory element). 
Two-input nodes are indicated by lines like the following• 

L001 AND (2)= (1) 

L001 is a label. AND indicates that this is a two-input node for non-negated 
patterns. The sequence (2)= (1) indicates that the node compares the second 
value of elements from the left and the first value of elements from the right; 
the -- indicates that it performs a test for equality. The terminal nodes contain 
the type T E R M  and the name of the production• For example 

T E R M  Plus0x 

As will be explained below, the R O O T  node is not needed in this represen- 
tation• 

3•2•2• Linearizing the network 

To make the nodes like the instructions for a v o n  Neumann machine, it is 
necessary to eliminate the explicit links between nodes. Many of the explicit 
links can be eliminated simply by linearizing the network, placing a node and 
its successor in contiguous memory locations• However,  since some nodes have 
more than one successor, and others (the two-input nodes) have more than one 
predecessor, linearizing is not sufficient in itself: two new node types must be 
defined to replace some of the links. The first of the new nodes, the FORK, is 
used to indicate that a node has more than one successor. The F O R K  node 
contains the address of one of the successors. The other successor is placed 
immediately after the FORK• For example, the F O R K  in the following 
indicates that the node L003 has two successors• 

L003 T E Q A  0, Expression 
F O R K  L004 
T E Q A  3, + 

L004 T E Q A  3, * 
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The  other  new node type, the M E R G E ,  is used where the network has to grow 
back together- - tha t  is, before two-input nodes. The two-input node is placed 
after one of its predecessors (say its left predecessor) and the M E R G E  is 
placed after the other. The M E R G E ,  which contains the address of the 
two-input node, functions much like an unconditional jump. Fig. 2 shows the 
effect of the linearization process; it contains the productions from Fig. 1 and 
the linearized network for their LHSs. 

3.2.3. Representing the nodes in memory 

This section shows how the nodes could be represented on a computer  which 
has a thirty-two bit word length. The thirty-two bit word length was chosen 
because it is typical of today's computers; the precise word length is not 
critical, however. Since the network can be rooted at a F O R K  (see the example 
in Fig. 2) it is not necessary to have an explicit root node for the network. 
Hence only seven classes of nodes are needed; FORKs, MERGEs ,  the two 
kinds of one-input nodes, the two kinds of two-input nodes, and the terminal 
nodes. 

FORKs and M E R G E s  could be represented as single words. Six bits could 
be used for a type field (that is, a field to indicate what the word represents) 
and the remaining twenty-six bits could be used for the address of the node 
pointed to. FORKs and M E R G E s  would thus be represented: 

I I I 
I TYPE [ ADDRESS I 
I I I 
I_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 

(6 b i t s )  (26 b i t s )  

Both kinds of one-input nodes could be represented as single words that are 
divided into three fields. The first field would hold the type of the node. The 
second field would hold the index of the value to test. The third field would 
hold either a constant or a second index. The bits in a word could be allocated 
as follows. 

I I I I 
I TYPE I INDEX I CONSTANT or INDEX I 
i I I I 
l_ l_ l_I_I_I_l_ l_ l_ l_ l_ l_ l_ l_ l_ l_ i_ l_ l_ i_ l_ l_ l_ l_ l_ l_ l_ l_ l_ l_ i_ i_ l  

(6 b i ts)  (10 b i ts)  (16 b i ts)  

A sixteen-bit field is required to represent an integer or an atom using the 
format of Section 3.1. Since a floating point number cannot be represented in 
sixteen bits, in nodes that test floating point numbers, this field would hold not 
the number, but the address of the number. 
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(P Plus0x 
(Goal 1' Type Simplify 
(Expression ]' Name (N) 

__~  . , .) 

(P Time0x 
(Goal 1" Type Simplify 
(Expression ~" Name (N) 

T Object (N)) 
~'Argl 0 q 'Op+ 

1' Object (N)) 
q'Argl 0 l ' O p *  

1' Arg2 (X)) 

~' Arg2 (X)) 

ROOT FORK L003 
T E Q A  0, Goal 
T E Q A  1, Simplify 
FORK L002 

LO01 AND (2) = (1) 
TERM Plus0x 

L002 AND (2) = (1) 
TERM Time0x 

L003 T E Q A  0, Expression 
TEQN 2, 0 
Fork L004 
T E Q A  3, + 
M E R G E  L001 

L004 T E Q A  3, * 
M E R G E  L002 

; Root node of the network 
; Is the element class Goal? 
; Is the Type Simplify? 

; Two-input node for Plus0x 
; Report  Plus0x is satisfied 
; Two-input node for Time0x 
; Report  Time0x is satisfied 
; Is the element class Expression? 
; Is the Argl  0? 

; Is the Op +? 

; Is the Op *? 

FIG. 2. A compiled network. 

T h e  terminal  n o d e s  could  also be  s tored in single words .  T h e s e  n o d e s  conta in  
two  fields, the usual  type field plus a longer  field for the index or address  of  the 
product ion  that the n o d e  represents .  

I I I 
I TYPE [ PRODUCTION [ 
I I I 
I_1_1_1_1_1_1_1_1_1_1_1_1_1_I_]_1_ I_1_1_1_1_1_ I_1_1_1_1_1_1_1_1_1 

(6 b i ts)  (26 b i ts)  

The length of a two-input node would depend on the number  of value pairs 
tested by the node. Each node could have one word of basic information plus 
one word for each value pair. The  first word would contain a type field, a 
pointer to the memory  for the left input, a pointer to the memory  for the right 
input, and a field indicating how many tests are per formed by the node. The 
bits in the word could be allocated as follows. 

I I I I I 
] TYPE I COUNT I MEMORY POINTER I MEMORY POINTER I 
I I I I I 
I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I-I 

(6 b i ts)  (4 b i ts)  (11 b i ts)  (11 b i ts )  
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The word for each test would contain three fields. Two fields would hold the 
indices of the two elements to test. The remaining field would indicate the test 
to perform; that is, it would indicate whether the node is to test for equality of 
the two elements, for inequality, or for something else. The bits in the Word 
might be allocated as follows. 

I I I I 
I TEST [ INDEX I INDEX [ 
I I I I 
I_l_I_I_I_l_I_l_I_I_l_l_I_I_l_I_I_I_I_l_I_I_l_l_l_I_I_I_I_I_I_I_I 

(6 bits) (13 bits) (13 bits) 

Note that the index fields here are longer than the index fields in the one-input 
nodes. This is necessary because the indices in the two-input nodes must 
designate elements in the tokens as well as values in the elements. 

3.3.  T h e  t o k e n s  

This section describes a space-efficient representation for tokens. This 
representation is not suitable for all interpreters; it requires the interpreter to 
process only one working memory change at a time, and it requires that certain 
parts of the network be traversed depth first. Fortunately, these are not serious 
restrictions. The simplest way to perform the match is process one token at a 
time, traversing the entire network depth first. Section 4 describes an inter- 
preter  that operates in this manner. 

If the interpreter operates this way, then it can use a stack to represent its 
tokens. When a token has to be built, first the tag for the token is pushed onto 
the stack, and then the working memory elements are pushed onto the stack in 
order. When tokens have to be extended (a very common operat ion--see  the 
code in Section 4) the additional working memory elements are just pushed 
onto the stack. 

The one-input nodes will be more efficient if they do not use this stack. Since 
all the one-input nodes will process the same working memory e lement - - the  
element that was just added to or deleted from working memory- - the  element 
should be made easily available. The element could be copied into a dedicated 
location in memory,  or the address of the element could be loaded into a 
dedicated base register. Either of these would make it possible for the 
one-input nodes to access the element without going through the stack. 

3.4.  T h e  in terpre ter ' s  s tate  

In addition to the stack for tokens, the interpreter must maintain another stack 
for its state information. One reason for the stack is to allow the interpreter to 
find its way about in the network. When the interpreter passes a FORK, it 
pushes the pointer it does not follow onto the stack. Then when it reaches the 
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end of a path it pops a pointer from the stack and follows it. Another  reason 
for the stack is to provide a place for the two-input nodes to keep their local 
information. As will be seen in the next section, the two-input nodes sometimes 
have to suspend themselves while their successors are processed. The stack 
holds the information that is needed to resume processing the two-input nodes. 

4. The Network Interpreter 

This section provides a concrete description of the operations performed by the 
network interpreter. One node from each class has been selected, and the code 
to interpret the nodes has been written. It might be noted that since the code 
sequences are short and simple, they could easily be written in microcode. 

The code is written in a PASCAL-like language which has literal labels and 
field extraction. Field extraction is indicated by putting two numbers within 
angle brackets; the first number  is the index of the high order bit in the field, 
and the second number is the index of the low order bit. The assumption will 
be made that the bits are numbered from right to left, with the low order bit 
being bit zero. Thus the expression SELF(31:26) indicates that the high order 
six bits of the value of the variable SELF are to be extracted and right justified. 

The main loop of the interpreter is very simple: the interpreter fetches the 
next node from memory and dispatches on its type field. Let the segment of 
memory that holds the nodes be called N O D E _ M E M O R Y  and let the pointer 
to the current node be called NC. The main loop is then: 

MAIN: SELF :--- NODE_MEMO RY [N C] ;  
CASE SELF(31 : 26) OF !Type field is high order 6 bits 

0: G O T O  FORK;  
1: G O T O  M E R G E ;  
2: G O T O  TERM;  
3: G O T O  TEQA;  

END;  

The node is copied into the variable SELF so that the node programs can 
examine it. The  assignment of numbers to the various node types is arbitrary. 
Goto 's  are used instead of procedure calls because these examples make all the 
state of the interpreter explicit, and not hidden in PASCAL'S stack. 

T E Q A  is typical of the one-input nodes for testing constants. If the segment 
of memory that holds the working memory element being processed is called 
CURRENT,  then T E Q A  is as follows. 

TEQA:  T E M P  :-- CURRENT[SELF(25:16)] :  !Get the word pointed to 
!by the index field 
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IF (TEMP(31 : 16) = 0) AND 
(TEMP(15:0)  = SELF(15:0))  

T H E N  G O T O  SUCC 
ELS E G O T O  FAIL: 

!Test type bits 
!Test value 

Either SUCC or FAIL  is executed after each one-input node. SUCC is 
executed when the test succeeds, and FAIL  is executed when the test fails. 
SUCC increments the node counter  to point to the next node. 

SUCC: N C : =  N C +  1; 
G O T O  MAIN; 

F AIL  tries to get a node from the stack of unprocessed nodes; if it cannot, it 
halts the match. Assuming the stack is named NS and the pointer to the top of 
the stack is called NSTOP, the code is: 

FAIL: IF NSTOP < 0 T H E N  G O T O  EXIT_MATCH;  
NC := NS[NSTOP]; 
NSTOP := N S T O P -  1; 
G O T O  MAIN; 

The one-input nodes for comparing pairs of values are similar to the other 
one-input nodes. TEQS is typical of these nodes. 

TEQS:  IF CURRENT[SELF(25 : 16)] = CURRENT[SELF(9:0) ]  
T H E N  G O T O  SUCC 
ELSE G O T O  FAIL;  

address onto NS and then passes control to the following F O R K  pushes an 
node. 

FORK: NSTOP : = NSTOP + 1; 
NS[NSTOP] := SELF(25:0);  
G O T O  SUCC; 

A two-input node must be able to determine whether it was reached over its 
left input or its right input. This can be indicated to the node by a global 
variable which usually has the value LEFT,  but which is temporarily set to 
R I G H T  when a M E R G E  passes control to a two-input node. If this global 
variable is called DIRECTION,  the code for the M E R G E  is 

M E R G E :  D I R E C T I O N  := RIGHT;  
NC := SELF(25:0);  
G O T O  MAIN; 

The two kinds of two-input nodes are very similar, so only A N D  is shown 
here. In order  not to obscure the more important information, some details of 
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the program are omitted. The code does not show how the variables are tested, 
nor does it show how tokens are added to and removed from the node's 
memories. Assuming the token stack is called TS and the pointer to the top 
element is called TSTOP, the program is as follows. 

i Control can reach this point many times during the processing 
! of a token. The node needs to update its state and put 
! information on NS only once, however. 

AND:IF  NS[NSTOP] < >  NC 
T H E N  

B E G I N  
NSTOP :-- NSTOP + 4; 
NS[NSTOP] := NC; 
N S [ N S T O P -  1] :-- DIRECTION;  
N S [ N S T O P -  2] := M E M O R Y C O N T E N T S  

(OPPOSITE(DIRECI ' ION)) ;  
N S [ N S T O P - 3 ]  := TSTOP; 
M O D I F Y _ M E M O R Y ( D I R E C T I O N ) ;  !Store the token 
D I R E C T I O N  := LEFT;  !Reset to the default 
END; 

Go process the tokens 

1 

LLOOP:  

IF NS[NSTOP] - 1] = R I G H T  T H E N  G O T O  R L O O P  
ELSE G O T O  LLOOP;  

Compare the token to the elements in the right memory 

!If the state is not in NS 
!Then put it there 

Fall out of the loop when the test succeeds so that 
the successors of this node can be activated 

R E P E A T  
TEMP := N E X T _ P O S I T I O N ( N S [ N S T O P -  2]); 
IF TEMP = NIL !If right memory is empty 
T H E N  !Then clean up and exit 

BEGIN 
TSTOP := N S [ N S T O P -  3]; 
NSTOP := N S T O P -  4; 
G O T O  F A I L ;  
END 

UNTIL  P E R F O R M  AND_TEST(TEMP,LEFT) ;  
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!Extend the token  
T S T O P  :=  N S [ N S T O P -  3] + 1; TS[NSTOP]  :=  T E M P ;  
!Prepare NS so that  control  will return to  this node  
N S T O P  := N S T O P  + 1; NS[NSTOP]  :=  NC;  
!Pass control  to the successors of this node  
N C  : = N C  + SELF(25 : 22) + 1; G O T O  M A I N ;  

! Compare  the token the e lements  in the left m e m o r y  
! 

R L O O P :  

This is similar to LLOOP.  

The  only remaining node  type is the T E R M  node.  Since updat ing the conflict 
set is a l anguage-dependent  opera t ion ,  that  detail of the T E R M  node  cannot  
be  shown. The  rest of  the processing of  the node  is as follows. 

T E R M :  U P D A T E _ C O N F L I C T _ S E T ( S E L F < 2 5  : 0)); 
G O T O  F A I L ;  

5. Performance of the Algorithm 

Extensive  studies have been  made  of  the efficiency of  the Re te  Match Al- 
gori thm. Both  analytical studies (which de te rmined  the t ime and space com-  
plexity of the algori thm) and empirical  studies have been  made.  This section 
presents  some of the results of the analytical studies. Because of space 
constraints,  it was not  possible to present  the empirical  results or  the proofs  of  

TABLE 1. Space and t ime complexi ty 

Complexity measure Best case Worst case 

Effect of working memory 
size on number of tokens O(1) O(W c) 

Effect of production memory 
size on number of nodes O(P) O(P) 

Effect of production memory 
size on number of tokens O(1) O(P) 

Effect of working memory 
size on time for one firing O(1) O(W 2c-1) 

Effect of production memory 
size on time for one firing O(log2 P) O(P) 

C is the number of patterns in a production. 
P is the number of productions in production memory. 
W is the number of elements in working memory. 
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the analytical results. The proofs and detailed results of some empirical studies 
can be found in [5]. 

Table 1 summarizes the results of the analytical studies of the algorithm. The 
usual notation for asymptotic complexity is used in this table [1].Writing that a cost 
is O(f(x)) indicates that the cost varies as f(x) plus perhaps some smaller terms in 
x, The smaller terms are ignored because the f(x) term will dominate when x is 
large. Writing that a cost is O(1) indicates that the cost is unaffected by the factor 
being considered. It should be noted that all the complexity results in Table 1 
sharp; production systems achieving the bounds are described in [5]. 

6. Conclusions 

The Rete  Match Algorithm is a method for comparing a set of patterns to a set 
of objects in order  to determine all the possible matches. It was described in 
detail in this article because enough evidence has been accumulated since its 
development in 1974 to make it clear that it is an efficient algorithm which has 
many possible applications. 

The algorithm is efficient even when it processes large sets of patterns and 
objects, because it does not iterate over the sets. In this algorithm, the patterns 
are compiled into a program to perform the match process. The program does 
not have to iterate over the patterns because it contains a tree-structured 
sorting network or index for the patterns. It does not have to iterate over the 
data because it maintains state information: the program computes the matches 
and partial matches for each object when it enters the data memory, and it 
stores the information as long as the object remains in the memory. 

Although the Rete  algorithm was developed for use in production system 
interpreters, it can be used for other purposes as well. If there is anything 
unusual about the pattern matching of production systems, it is only that the 
pattern matching takes place on an unusually large scale. Production systems 
contain rather ordinary patterns and data objects, but they contain large 
numbers of them, and invocations of the pattern matcher occur very frequently 
during execution. If programs of other kinds begin to use pattern matching 
more heavily, they could have the same efficiency problems as production 
systems, and it could be necessary to use methods like the Rete  Match 
Algorithm in their interpreters as well. Certainly the algorithm should not be 
used for all match problems; its use is indicated only if the following three 
conditions are satisfied. 
- T h e  patterns must be compilable. It must be possible to examine them and 

determine a list of features like the lists in Section 2.2.1. 
- T h e  objects must be constant. They cannot contain variables or other 

non-constants as patterns can. 
- The set of objects must change relatively slowly. Since the algorithm maintains 

state between cycles, it is inefficient in situations where most of the data changes 
on each cycle. 
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